National Air Toxics Assessment (NATA) & Residual Risk Update

EPA Region1
Science of Environmental Justice Workshop
Ted Palma, USEPA, OAQPS
May 26, 2004

Outline

- What is the NATA
 - Why did we do it
 - What did the assessment consist of
 - What were the results of the 1996 Assessment
 - What are the results looking like in the 1999 Assessment
- What is the Residual Risk Program
 - Where do we stand
 - What are the results looking like

Goals of the National-Scale Assessment

- Tool for EPA and States/Locals/tribes
- Identify air toxics of greatest concern
- Characterize contributions of different emission sources to exposure and risk
- Prioritize collection of new data
- Provide a baseline (with ambient data) to track trends and measure progress against goals
- By itself, the assessment is NOT being used as the basis for specific regulatory decisions

National-Scale Assessments

1996 Assessment

- Inhalation exposure only
- Chronic exposures only
- 1996 emissions data
- 48 states, VI, PR
- Sources of indoor origin excluded
- 50-km range
- Focuses on average/median exposures, not individual extremes
- Census tract-level calculations; county-level and higher presentations
- 32 urban HAPs & diesel PM
- Released in May 2002 to public

1999 Assessment

- Inhalation exposure only
- Chronic exposures only
- 1999 emissions data
- 50 states, VI, PR
- Some sources of indoor origin included
- 50-km range
- Focuses on average/median exposures, not individual extremes
- Census tract-level calculations; county-level and higher presentations
- 150 urban HAPs & diesel PM
- Expected release to public in late summer 2004

Components of the National-Scale Assessment

1996 National Scale Assessent

1996 NATA - National Scale Assessment Predicted County Level Carcinogenic Risk

1996 Risk Characterization

Distribution of lifetime cancer risk for the US population, based on 1996* exposure to 29 carcinogenic air pollutants from various source sectors

* Results are based on inhalation exposure to outdoor sources only. Although these results assume continuous exposure to 1996 levels of air toxics over a lifetime, current and planned control programs are expected to substantially reduce these exposures and associated cancer risk for some pollutants. See additional information on the following page.

Initial National-Scale Assessment Risk Characterization

- Cancer
 - National drivers¹
 - Benzene
 - Chromium
 - Formaldehyde
 - Regional drivers²
 - Arsenic
 - 1,3-Butadiene
 - Coke oven emissions
 - POM
- ¹ Risk > 10 in 1 million to 25 million people
- ² Risk > 10 in 1 million to 1 million people <u>OR</u> Risk > 100 in 1 million to 10,000 people

- Non-Cancer
 - National drivers³
 - Acrolein
 - Regional drivers⁴
 - Acetaldehyde
 - Arsenic
 - 1,3-Butadiene
 - Formaldehyde
 - Manganese

 $^{^{3}}$ HQ > 1.0 to 25 million people

⁴ HQ > 1.0 to 10,000 people

Initial National-Scale Assessment Risk Characterization

Limitations:

- It includes inhalation exposure only some air pollutants (e.g., PCBs, mercury, lead) may pose significant risks by ingestion
- It has low resolution may not capture hot spots
- Did not include a risk characterization for Diesel PM
- Limited comparisons show substantial underprediction of ambient levels, especially for metals
- It does not estimate individual extremes only typical exposures

1999 National Scale Assessment

DRAFT: 1999 Risk Characterization

Distribution of lifetime cancer risk for the US population, based on ASPEN model estimates for all sources.

1999 NATA Cancer Risk Source Sector Contributions

1999 NATA - National Scale Assessment Predicted County Level Carcinogenic Risk (from ASPEN)

1999 NATA Comparison Between

All Census Tracts and HUD-designated "Qualified Census Tracts."

RESIDUAL RISK

Mandate From Congress

- Assess risks from stationary sources that emit air toxics after technology-based (MACT) standards are in place
- Set additional standards if MACT does not protect public health with an "ample margin of safety"
- Set additional standards if necessary to prevent adverse environmental effects
- Review existing MACT and revise as appropriate

Overview of Where We are Now

- Volumes I and II of Risk Assessment Library are complete
- All 20 of the two- and four-year MACT residual risk standards have been started
- Five of the 24 seven-year MACT projects have initiated work groups

Residual Risk Test: Facilities Subject to MACT With Maximum Individual Noncancer Hazard Index (HI) in Specific Ranges 180 (Percentage of Facilities Assessed in Parentheses) **■** HI ≥ 10 160 HI ≥ 1.0 and < 10</p> HI ≥ 0.2 and < 1.0</p> 140 ■ HI < 0.2 Number of Facilities 120 100 80 60 40 20 0 Auto and Light Dary Trucks (100,0%) EO Commercial Sterilizers 62,0% Snipbulding and Snip Repair 26.3% Chromium Electropating (0.3%) Halogenated Solvente Osolo) Marine Vessel Loading 19.7% POE Dry Cleaning (A.0%) Petdeun Zeineites I, 100,0% Powners and Resins 1, 85.7% Polyness and Resins II (100.0%) Powners and Resins W (8.3%) Gas Distribution (68 996) Magnetic Tabe 10 Tolo) HOH (82.3%)

Residual Risk (Continued)

- Complete current standards with court-ordered deadlines
 - Coke ovens final 2005
 - Dry cleaning final 2006
 - HON final 2006*
 - Halogenated Solvents final 2006*
- Complete 4 proposals of no further controls by end of 2006*
 - Industrial cooling towers
 - Magnetic tape
 - Ethylene oxide sterilizers
 - Gasoline distribution

Challenges Facing Residual Risk Program

- Develop rules which target high-risk facilities in categories without impacting low-risk ones
 - Process should be simple, efficient
 - Process should be implementable by States
- Develop innovative ways to reduce risks where controls are not available
 - MACT may have been effective, yet risks may still be high

For More Information

Website for Air Toxics:

www.epa.gov/ttn/atw

Website for Risk Assessment Library:

www.epa.gov/ttn/fera/risk_atoxic.html